# Euler's Formula

# Colorized Definition

Euler's Formula

\newcommand{\growth}{\color{c1}}
\newcommand{\rotation}{\color{c2}}
\renewcommand{\time}{\color{c3}}
\newcommand{\real}{\color{c4}}
\newcommand{\imaginary}{\color{c5}}
\newcommand{\location}{\color{c6}}

$$\growth e^{\rotation i \time x} \plain \location = \real \cos(x) \plain + \imaginary i\sin(x)$$

\growth      Growth
\plain       in a
\rotation    perpendicular direction
\plain       over
\time        time
\\
\plain       is circular:
\location    here are the
\real        horizontal 
\\
\plain       and
\imaginary   vertical
\plain       coordinates 

# Read More