# Convolution
# Colorized Definition
\newcommand{\integral}{\color{c1}}
\newcommand{\signal}{\color{c2}}
\newcommand{\flip}{\color{c3}}
\newcommand{\kernel}{\color{c4}}
\newcommand{\slide}{\color{c5}}
\newcommand{\convolve}{\color{c6}}
$$
(\kernel f
\convolve *
\signal g
\plain )( \slide t \plain )
\ \ \stackrel{\mathrm{def}}{=}\
\integral \int_{-\infty}^\infty
\kernel f(\tau)
\signal g(\slide t \plain \flip - \tau \signal )\
\integral d\tau
$$
\plain To
\convolve convolve
\kernel a kernel
\plain with an
\signal input signal:
\\\
\flip flip the signal,
\slide move to the desired time,
\\
\integral and accumulate every interaction
\kernel with the kernel